Luminescent magnetic hybrid materials based on europium and terbium complexes <u>J. L. Moura</u>^{1*}, P. R. S. Santos¹, H. E. O. Silva¹, I. F. da Costa¹, G. P. Pires¹, H. F. Brito², W. M. Faustino¹, E. E. S. Teotonio¹ ¹ Universidade Federal da Paraíba, CCEN - Departamento de Química, João Pessoa, PB, Brazil. ² Universidade de São Paulo, Instituto de Química, SP, Brazil * Corresponding author: jandeilsonlimamoura@hotmail.com Luminescent complexes based on lanthanides and β-diketonate ligands may be immobilized on inorganic matrices in order to improve mechanical features, thermal and chemical stability and light-emission properties (e.g., quantum yield, lifetime and UV photostability). Furthermore, materials that combine photoluminescent and magnetic properties could be used in a wide range of applications in biological systems [1] as well as in catalysis [2]. In this regard, we have prepared a hybrid material based on ferrite (Fe₃O₄, synthesized by co-precipitation method) as support for lanthanides complexes. The material consists of a magnetite core coated by an amorphous silica shell (prepared by sol-gel method) on which europium and terbium complexes are covalently anchored. In a typical sample, dibenzoylmethane (dbm) molecules are covalently anchored on the silica shell of magnetic particle coordinating the europium(III) or terbium(III) ions. To this system, was added the β diketonate ligand (dibenzoylmethane - dbm, 2-thenoyltrifluoroacetonate - tta or 2-(4methylbenzoyl)indan-1,3-dione – mbind) resulting in the final material. The luminescent samples have been characterized by powder X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA) and IR absorption spectroscopy (FT-IR) as well as by luminescence spectroscopy. The X-ray diffraction (XRD) patterns of Fe₃O₄ show the characteristic narrow diffraction peaks of magnetite, the relative intensities of which match well with the standard database peaks of the reference pattern (JCPDS file No. 19-0629), confirming the cubic inverse spinel structure of magnetite. The field-dependent magnetic measurements presented nearly zero value of coercivity (Hc) and remanent magnetization (σ_r) , suggesting that the materials exhibit superparamagnetic behavior. In the FT-IR spectrum of sample containing tta, the bands $v_s(C=0)$ (~1600 cm⁻¹), $v_{ass}(C=0)$ (~1400 cm⁻¹) from ligand appears, together with bands of symmetric and asymmetric stretching vibrations of Si-O-Si at 970-1,088 cm⁻¹. The hybrid materials exhibited intense red emission assigned to the 4f-4f transitions of the Eu(III) ion, likewise characteristic green emission of Tb(III), indicating an efficient intramolecular ligand-to-metal energy transfer. Keywords: Luminescent, Magnetic, Hybrid material, Lanthanides. ## Acknowledgements This work was supported by CNPq and CAPES. ## References - [1] Dong, J. and Zink J. I. ACS Nano. 2014, 8, 5199. - [2] Govindaiah, P.; Park, T.J.; Jung, Y. J.; Lee, S. J.; Ryu, D. Y and Kim. *J. H. Macromol. Res.* 2010, 18, 1109. ^{18&}lt;sup>th</sup> International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.