Photoluminescence and Magnetic Investigation of ternary ion activated enhanced Multicolor LaF₃ Nanophasphores

<u>Navadeep Shrivastava^{1,2}</u>, L. U. Khan^{2,3}, J. M. Vargas⁴, Carlos Ospina³, J. A. Q. Coaquira⁵, Giorgio Zoppellaro⁶, H. F. Brito², M. C. F. Felinto⁷, and S. K. Sharma¹*

¹Federal University of Maranhão, Department of Physics, Sao Luis, MA, Brazil. ² University of São Paulo, Institute of Chemistry, SP, Brazil. ³Brazilian Nanotechnology National Laboratory (LNNano–CNPEM), SP, Brazil. ⁴Centro Atómico Bariloche, CONICET,, San Carlos de Bariloche, Argentina. ⁵University of Brasilia, Institute of Physics, DF, Brazil. ⁶Palacky University, Regional Centre for Advanced Technologies and Materials, Olomouc, Czech Republic. ⁷University of Sao Paulo, Nuclear and Energy Research Institute – IPEN, SP, Brazil.

* Corresponding author: surender76@gmail.com

The luminescence-tuneable multicolored LaF₃:xCe³⁺,xGd³⁺,yEu3+ (x = 5; y = 1, 5, 10) and 15 mol%) nanoparticles have been synthesized via a new low cost polyol method. Powder X-ray diffraction and high resolution transmission electron microscopy confirms the hexagonal phase of LaF₃:xCe³⁺,xGd³⁺,yEu³⁺ nanophosphors with average sizes (oval shape) from 5-7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce^{3+} , Gd^{3+} and Eu^{3+} dopants in the LaF₃ host matrix. The photoluminescence spectra and electron paramagnetic resonance measurement guarantee the presence of Eu²⁺, corroborated through DC susceptibility measurements of the samples displaying the paramagnetic behavior at 300 K, whereas a weak ferromagnetic ordering at 2 K. The non-radiative energy transfer processes from the $4f^1 \rightarrow 4f^5d^1$ state (Ce³⁺) (ultraviolet excitation, $\lambda_{ex} = 260$ nm) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in visible region from the $4f^{6}5d^{1}$ (Eu²⁺) and ${}^{5}D_{0}$ (Eu³⁺) emitting level, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of Gd^{3+} ion sub-lattice as bridge and finally trapping by $\mathrm{Eu}^{2+/3+}$, upon excitation of Ce^{3+} ion. The calculation of experimental intensity parameters ($\Omega_{2,4}$) have been discussed and highest emission quantum efficiency ($\eta = 85\%$) of Eu³⁺ ion for y = 10 mol% sample is reported. The advantageous existence of Eu^{2+}/Eu^{3+} ratio along with variously-doped nanomaterials described in this work, exhibit tunable emission color in the blue-white-red regions, highlighting their potential application in solid state lighting devices, scintillation, and multiplex detection.

Keywords: Photoluminescence; magnetic investigation; EPR; LaF₃:Ce,Gd,Eu; downconversion; Judd-ofelt.

Acknowledgements

This work was supported by CAPES, FAPEMA, FAPESP and CNPq.

References

[1] N. Shrivastava, L.U. Khan, Z.U. Khan, J. Vargas, O. Moscoso-Londoño, C. Ospina, H.F. Brito, Y. Javed, M.C.F.C. Felinto, A.S. de Menezes, M. Knobel, S.K. Sharma, J. Mater. Chem. C. 5(2017) 2282–2290.

[2] M. Osinski, J.B. Plumley, N.J. Withers, B.A. Akins, G. Medina, A.C. Rivera, G.A. Smolyakov, ICONN 2010 - Proc. 2010 Int. Conf. Nanosci. Nanotechnol. (2010) 189–192D.
[3] L.G. Jacobsohn, K.B. Sprinkle, S.A. Roberts, C.J. Kucera, T.L. James, E.G. Yukihara, T.A. Devol, J. Ballato, J. Nanomater. 523638 (2011) 1-6.J.

18th International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.