Synthesis and Characterization of triply doped Magneto-Luminescent Iron-oxide/SiO₂ and NaGdF₄:RE³⁺

<u>Navadeep Shrivastava</u>^{1,2}, Diego Muruca^{3,4}, Uéslen Rocha,⁵ Sergio Moreno⁶, Carlos Jacinto⁵, H. F. Brito², Marcelo Knobel,³ M.C.F.C. Felinto⁷, S. K. Sharma^{*1}

¹Federal University of Maranhão, Department of Physics, Sao Luis, MA, Brazil. ²University of São Paulo, Institute of Chemistry, São Paulo, SP, Brazil. ³State University of Campinas, Institute of Physics "Gleb Wataghin", Campinas, SP, Brazil. ⁴Brazilian Nanotechnology National Laboratory (LNNano), Campinas, SP, Brazil. ⁵Federal University of Alagoas, Institute of Physics, Maceió, AL, Brasil. ⁶Bariloche Atomic Center, Department of Material Science, Bariloche, Argentina, ⁷University of São Paulo, Institute of Energy and Nuclear Research, São Paulo, SP, Brazil.

* Corresponding author: surender76@gmail.com

Reported nanorice of Iron-oxide/SiO₂/NaGdF₄: RE^{3+} (RE = 5%Ce, 5%Tb, x%Dv; x = 1, 5 and 10) has been synthesized using a single reaction microwave synthesis procedure, incorporating Iron oxide @SiO₂ as seeds. The hexagonal phase as β -NaGdF₄ was confirmed by powder X-ray diffraction and high-resolution transmission electron microscopy. The nanocrystals (~30 nm) display ferromagnetic properties at 300 K and 2 K. ZFC/FC measurements show clear magnetic contribution of rare-earth elements. of During the downconversion emission, energy transfer process like $Ce^{3+} \rightarrow Gd^{3+} \rightarrow Tb^{3+} \rightarrow Dy^{3+}$ occurred, in which Gd^{3+} ions play an important intermediate role along with Tb^{3+} . The excitation spectra of all the samples consist of a broad band at around 250 nm and two sharp lines at about 275 nm and 310 nm, which can be attributed to the Ce³⁺(4f-5d) transition and Gd³⁺ ($^{8}S_{7/2}$) $\rightarrow^{6}I_{J}$ transition and Gd^{3+} (${}^{8}S_{7/2} \rightarrow {}^{6}P_{J}$) transition, respectively. The presence and intensity of Ce³⁺ and Gd³⁺ excitation peaks in the excitation spectra indicate the existence of energy transfer from Ce^{3+} and Gd^{3+} to the luminescent ions. Excitation into the Ce^{3+} band at 260 nm yields weak and sharp emission of Gd^{3+} at 310 nm, weak emission of $Ce^{3+}(300-400 \text{ nm})$ and strong emission color lines of RE³⁺ (400–700 nm). The emission peaks (400–700 nm) are composed of the characteristic transitions of Tb^{3+} (${}^{5}D_{4} \rightarrow {}^{7}F_{J}$, J = 6-3), and Dy^{3+} (${}^{4}F_{9/2} - {}^{6}H_{15/2}$, ${}^{6}H_{13/2}$), respectively. Tunable multicolor down-conversion emissions are achieved from Ironoxide/SiO₂/NaGdF₄:RE³⁺ nanocrystals under an ultraviolet excitation. The CIE chromacity shows the green-yellow region, depending on concentration of Dy. The overall characteristics show strong magnetic behavior and considerable luminescence emission of the nanoscrystals leading to potential applications in biomedical field such as drug targeting and magnetic resonance imaging (MRI).

Keywords: Magnetite, NaGdF₄, Photoluminescence, hysteresis, Rare-earth magnetism, Energy transfer.

Acknowledgements

This work has been supported by FAPEMA, FAPESP and CAPES.

References

[1] Hao-Xin Mai, Ya-Wen Zhang, et. al, J. Am. Chem. Soc. 128 (2006), 6426-6436.

[2] Feng Wang, Renren Deng, Xiaogang Liu, Nat. Protocol, 9, (2014), 1634-1644.

[3] Lilli Schneider, Thorben Rinkel, Benjamin Voß, et. al., Nanoscale, 8 (2016), 2832-2843.

[4] Ao Xia, Yuan Gao, Jing Zhou, et. al., Biomaterials, 32 (2011), 7200-7208.