## Persistent luminescence mechanisms of Pr<sup>3+</sup>-, Eu<sup>3+</sup>-, Tb<sup>3+</sup>-doped lutetium oxide

C. C. S. Pedroso<sup>1,\*</sup>, J. M. Carvalho<sup>2</sup>, L. C. V. Rodrigues<sup>1</sup>, J. Hölsä<sup>3</sup>, H. F. Brito<sup>1</sup>

<sup>1</sup> University of São Paulo, Institute of Chemistry, BR-05508-000, São Paulo-SP, Brazil.
<sup>2</sup> University of São Paulo, Institute of Physics, Department of Applied Physics, BR-05508-090, São Paulo-SP, Brazil.
<sup>3</sup> University of the Free State, Department of Physics, Bloemfontein ZA-9300, South Africa.
\* Corresponding author: ccsp@ig.usp.br

Persistent luminescence is a phenomenon where the material emits radiation from seconds to several hours after cessation of irradiation, such as light, UV radiation, electrons, etc. Persistent luminescence, a special case of thermally stimulated luminescence, results from storage of the excitation energy in traps and its subsequent release induced by thermal energy available at the appropriate temperature [1,2]. The persistent luminescence mechanisms are not entirely agreed upon for every material, however. In this work, the Lu<sub>2</sub>O<sub>3</sub>:R<sup>3+</sup>,M (R,M: Pr,Hf<sup>IV</sup>; Eu,Ca<sup>2+</sup> or Tb,Ca<sup>2+</sup>) materials were prepared. Persistent luminescence spectra of the materials show red/NIR, reddish orange and green emission assigned to the 4f<sup>N</sup> $\rightarrow$ 4f<sup>N</sup> transitions characteristic of Pr<sup>3+</sup>, Eu<sup>3+</sup> and Tb<sup>3+</sup> ions, respectively. Inclusion of Hf<sup>IV</sup> and Ca<sup>2+</sup> co-dopants in the Lu<sub>2</sub>O<sub>3</sub> host increases the emission intensity and duration of persistent luminescence due to generation of traps caused by charge compensation in the lattice as well as these ions in the Lu<sup>3+</sup> sites. The persistent luminescence mechanisms were developed



through similar principles based on experimental data of band gap energy, energy level position of  $R^{2+/3+}$  ions in the host and trap energies as shown for  $Lu_2O_3:Tb^{3+},Ca^{2+}$ (Fig.). This similarity confirms the correct interpretation of the experimental data for the Lu<sub>2</sub>O<sub>3</sub>:R<sup>3+</sup>,M materials and encourages the expansion of similar models for other persistent luminescence materials.

Figure: Persistent luminescence mechanism of Lu<sub>2</sub>O<sub>3</sub>:Tb<sup>3+</sup>,Ca<sup>2+</sup>.

Keywords: Persistent luminescence mechanisms, Praseodymium, Europium, Terbium, Lutetium oxide.

## Acknowledgements

The authors acknowledge CNPq, CAPES and FAPESP (Brazil) for financial support as well as LNLS (Brazil) for the synchrotron measurements.

## References

[1] K. van den Eeckhout, D. Poelman, P. F. Smet, Materials 6 (2013) 2789–2818.

[2] C. C. S. Pedroso, J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, H. F. Brito, ACS Appl. Mater. Interfaces 8 (2016) 19593–19604.

<sup>18&</sup>lt;sup>th</sup> International Conference on Luminescence – ICL 2017, from August 27<sup>th</sup> to September 1<sup>st</sup> 2017, João Pessoa, Paraíba, Brazil.