Designing new NIR persistent luminescence materials: the case of Yb³⁺doped rare earth oxysulfides

I.P. Machado¹, J.M. Carvalho^{1,2}, C.C.S. Pedroso¹, V.C. Teixeira³, H.F. Brito¹, L.C.V. Rodrigues^{1,*}

¹University of São Paulo, Institute of Chemistry, São Paulo-SP, Brazil. ² University of Turku, Department of Chemistry, Turku FI-20014, Finland. ³ Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, SP, Brazil. * Corresponding author: lucascvr@ig.usp.br

Despite the huge amount of publications about persistent luminescence, there is a lack of materials with emission in the near infrared (NIR) region. NIR persistent luminescence materials can be potentially applied as in vivo nanoprobes [1-3]. Among many activator ions for NIR persistent luminescence, the Yb³⁺-activated materials are good candidates due to their unique 980 nm emission [4].

According to the Vacuum Refereed Binding Energy diagram of lanthanide ions $(Ln^{2+} and Ln^{3+})$, the energy of ground levels of trivalent Eu and Yb is similar [5]. We expect that the substitution of Eu³⁺ for Yb³⁺ ion should not change the persistent luminescence mechanism, creating persistent luminescence material activated by the NIR emission of Yb³⁺. Based on the very efficient Y₂O₂S:Yb³⁺,Mg²⁺,Ti^{3+/IV} red persistent luminescence materials we designed the R₂O₂S:Yb³⁺,Mg²⁺,Ti^{3+/IV} phosphors (R³⁺: La, Gd, Y) which presented efficient NIR persistent luminescence.

After irradiation at the O²⁻(2p) \rightarrow Yb³⁺(4f¹³) and S²⁻(3p) \rightarrow Yb³⁺(4f¹³) charge transfer bands (310 nm), the R₂O₂S:Yb³⁺,Mg²⁺,Ti^{3+/IV} materials exhibit NIR photoluminescence arising from the Yb³⁺ ²F_{5/2} \rightarrow ²F_{7/2} transitions. The NIR emission could easily be visualized from fluorescence micrographs essays. When ceasing the irradiation on the materials, both Ti³⁺ and Yb³⁺ persistent luminescence can be observed, ranging from the red (600) to the NIR (980 nm) region of the spectrum, respectively. The persistent luminescence mechanism of Yb³⁺ probably involves a hole trapping process as the proposed to Eu³⁺ materials, followed by the hole feeding to the Yb³⁺–e⁻ pair. The infrared persistent luminescence involving the Yb³⁺ ²F_{5/2} \rightarrow ²F_{7/2} transition makes this new material suitable for future applications.

Keywords: Infrared, persistent luminescence, Yb³⁺, materials design.

Acknowledgements

This work was supported by CNPq and CAPES.

References

[1] Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J-P. Jolivet, D. Gourier, M. Bessodes, D. Scherman. Proc. Natl. Acad. Sci. U.S.A., 104 (2007) 9266.

[2] T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman. ACS Nano, 5 (2011) 854.

[3] D.-C. Yu, R. Martín-Rodríguez, Q.-Y. Zhang, A. Meijerink, F.T. Rabouw. Light Sci. Appl., 4 (2015) 344.

[4] Y-J. Liang, F. Liu, Y-F. Chen, X-J. Wang, K-N. Sun, Z. Pan, Light Sci Appl 5 (2016) e16124.

[5] P. Dorenbos, Phys Rev B - Condens Matter Mater Phys 85 (2012) 1–10.

^{18&}lt;sup>th</sup> International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.