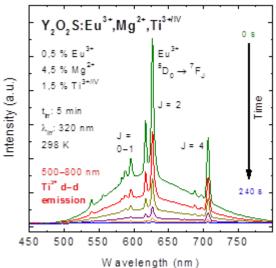
Novel persistent luminescence mechanism for the red-emitting Eu³⁺-doped rare earth oxysulfides

<u>I. P. Machado^{1*}</u>, C. C. S. Pedroso¹, J. M. de Carvalho², V. C. Teixeira³, H. F. de Brito¹, L. C. V. Rodrigues¹


¹Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo 05508-000, São Paulo-SP, Brasil. ²Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo 05508-090, São Paulo-SP, Brasil. ³Laboratório Nacional de Luz Síncrotron (LNLS–CNPEM), Campinas-SP, 13083-970, Brasil.

* Corresponding author: imachado@ig.usp.br

Since the discovery of Eu^{2+} -activated long persistent luminescence materials, only a few red and near-infrared (NIR) persistent luminescence materials can be found in literature. The Y₂O₂S:Eu³⁺,Mg²⁺,Ti^{3+/IV} is so-called one of the most efficient red persistent luminescence, nonetheless the persistent luminescence mechanisms proposed for this material are qualitative and sometimes inconsistent. In addition, the preparation of rare earth oxysulfides (R₂O₂S, R³⁺: La, Gd, Y) is difficult due to degradation R₂O₂S \rightarrow R₂O₃ processes under high temperatures. In this work, the R₂O₂S:Eu³⁺ and R₂O₂S:Eu³⁺,Mg²⁺,Ti^{3+/IV} materials were successfully and rapidly (2 steps of 25 minutes) prepared by microwave-assisted solid-state synthesis (MASS). All materials presents red persistent luminescence arising from Eu³⁺ 5 D₀ \rightarrow ⁷F₀₋₄ emissions. Mg,Ti-co-doped materials also presents a broad emission band, which is related to the Ti³⁺ d-d transitions (Fig. 1). The intensity of Ti³⁺ d-d persistent emission is

host R_2O_2S dependent: La $\leq Gd \leq Y$.

new persistent luminescence mechanism is proposed including holetrapping and electron-trapping processes. The hole-trapping mechanism occurs via valence band and it is related to the Eu³⁺ ions, explaining the persistent luminescence observed in non-co-coped materials. On the other hand, electron-trapping mechanism occurs via conduction band and it is responsible to the broad band Ti³⁺ persistent luminescence. The enhancement of Eu³⁺ persistent luminescence through Mg, Ti-codoping is due to an energy transfer Ti³⁺→Eu³⁺ process, which is very efficient in the Y₂O₂S host, explaining the supremacy of the $Y_2O_2S:Eu^{3+},Mg^{2+},Ti^{3+/IV}$ material. The unique energy transfer Ti³⁺→Eu³⁺ process established

Fig. 1 Persistent luminescence spectrum of the Y_2O_2S : Eu^{3+} , Mg^{2+} , $Ti^{3+/IV}$ material.

in this work opens a way on the systematic designing of new red, and also NIR persistent luminescence materials, suitable for bio-imaging probes and solar cells sensitizers.²

Keywords: Persistent luminescence, Oxysulfide, Eu³⁺, Mechanism, Microwave synthesis.

Acknowledgements

To the TGM beamline staff (LNLS) and the CNPq (141446/2016-1).

References

- [1] K. Van den Eeckhout, D. Poelman, P.F. Smet. Materials (Basel) 6 (2013) 2789–2818.
- [2] S.K. Singh. RSC Adv. 4 (2014) 58674–58698.

^{18&}lt;sup>th</sup> International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.