## Self-Assembled Nanotubular Layered Double Hydroxides with Tunable Photoluminescence

A. F. Morais,<sup>1</sup> I.G.N. Silva,<sup>2</sup> S.P. Sree,<sup>2</sup> H.F. Brito,<sup>2</sup> G. Brabantsb,<sup>3</sup> J.A. Martens,<sup>3</sup> C.E.A. Kirschhock<sup>3</sup>, E. Breynaert<sup>3</sup> and <u>D. Mustafa<sup>1,\*</sup></u>

<sup>1</sup> Instituto de Física da Universidade de São Paulo, 05508-090 - São Paulo, SP, Brazil.
<sup>2</sup>Instituto de Química da Universidade de São Paulo, 05508-900 - São Paulo, SP, Brazil.
<sup>3</sup>KU Leuven – Center for Surface Chemistry and Catalysis. B-3001 Heverlee, Belgium.
\* Corresponding author: <u>dmustafa@if.usp.br</u>

Self-assembled luminescent LDH nanotubes (Ø 20 nm) combine the potential of  $RE^{3+}$  containing LDH with a high surface area and easily accessible mesopore (175 m<sup>2</sup>/g; 0.75 cm<sup>3</sup>/g) suitable for hosting large sensitizing dyes and other interesting photonic species such as luminescent nanodots.[1] While standard Layered Double Hydroxides (LDH) represent a unique family of layered inorganic anion exchangers (with composition  $[M^{2+}_{1-x}M^{3+}_{x}(OH)_2]^{x+}A^{y-}_{x/y}$ •nH<sub>2</sub>O; A: anion;  $M^{2+}/M^{3+}$  divalent/trivalent metal cation), they exhibit a limited specific surface area and no mesopore volume.[2] The relatively weak interlayer bonding however results in excellent expanding properties and high uptake of bulky organic and inorganic anions. Partial isomorphic substitution with RE<sup>3+</sup> ions results in a luminescent layered where anionic sensitizing dyes directly adsorb to the positive charge located on the RE<sup>3+</sup> ions.[3] As such they can serve as antenna molecules efficiently transferring additional photon energy to the RE and offering a route for improving the quantum yield. This explains the huge potential for applying RE<sup>3+</sup> containing LDH as luminescent material.

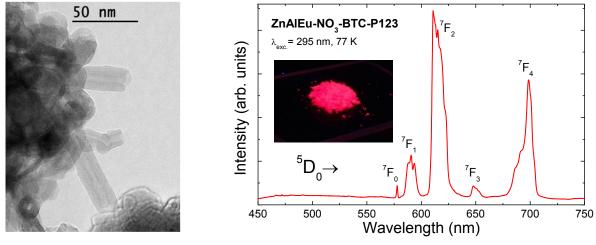



Fig. 1: Bright Field-TEM image of LDH nanotubes.

Fig. 2: Emission spectrum for the nanotubular mesoporous LDH recorded at 77 K and excited at 295 nm (BTC band). The inset shows the red emission.

Keywords: layered double hydroxide, nanotube, mesopore, rare earth, photoluminescence.

## Acknowledgements

This work was supported by FAPESP, CNPq and Flemish Government (Methusalem).

## References

[1] A. F. Morais et al. Chem. Comm. (accepted 2017).

- [2] R. Ma and T. Sasaki Adv. Mater. 22 (2010) 5082.
- [3] P. Gunawan and R. Xu, J. Phys. Chem. C 113 (2009) 17206.

18<sup>th</sup> International Conference on Luminescence – ICL 2017, from August 27<sup>th</sup> to September 1<sup>st</sup> 2017, João Pessoa, Paraíba, Brazil.