Photoluminescence of europium(III) tetrakis(thenoyltrifluoroacetonate) with imidazolium countercations in ionic liquids

T. B. Paolini^{1,*}, H. F. Brito¹

¹ Universidade de São Paulo, Instituto de Química, SP, Brazil * Corresponding author: tpaolini@iq.usp.br

The aim of this work was to study the optical properties of a new series of rare earth (RE³⁺) tetrakis(β-diketonates) complexes with high luminescence intensity, both in solid state and when dissolved in imidazolium-based ionic liquids. The [C_nmim][RE(TTA)₄] (RE: Gd³⁺ e Eu³⁺) complexes were prepared by using the ligand thenoyltrifluoroacetonate (TTA⁻) and the countercations 1-alkyl-3-methylimidazolium ([C_nmim]⁺), varying the length of the alkyl chain at the imidazolium from three to eight carbon atoms. Besides, all the ionic liquids 1-alkyl-3methyl-imidazolium bromide ([C_nmim]Br) were also synthesized. The synthetized complexes had their optical properties studied, both in the solid state and in solutions of the corresponding ionic liquids [C_nmim]Br (Figure 1), using photoluminescence spectroscopy of excitation and emission, time resolved emission spectra, and luminescence decay curves. Based on the phosphorescence spectral data of the complexes [C_nmim][Gd(TTA)₄], it was possible to determine the singlet (S) and triplet (T) excited states positions of the TTA⁻ ligand in these systems. The [C_nmim][Eu(TTA)₄] complexes showed a high intense red-colored luminescence from the trivalent europium ion, both in the solid state and in solutions of ionic liquids, originating from the ${}^5D_0 \rightarrow {}^7F_{0-4}$ transitions. The spectral data of the complexes in each case showed that the transfer of energy from the TTA⁻ ligand to the Eu³⁺ ion is very efficient. The Eu³⁺ coordination compounds have high emission quantum efficiencies (~75%). This result shows a great potential of these europium systems for application as light-converting molecular devices (LMDCs).

Figure 1. [C_nmim][Eu(TTA)₄] complexes dissolved in [C_nmim]Br ionic liquids, under ambient light (left) and under ultraviolet radiation (right), showing their intense luminescence.

Keywords: rare earths, coordination compounds, imidazolium-based ionic liquids, photoluminescence.

Acknowledgements

This work was supported by CAPES.

^{18&}lt;sup>th</sup> International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.